skip to main content


Search for: All records

Creators/Authors contains: "Sagoo, Navjit"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    As the world warms, there is a profound need to improve projections of climate change. Although the latest Earth system models offer an unprecedented number of features, fundamental uncertainties continue to cloud our view of the future. Past climates provide the only opportunity to observe how the Earth system responds to high carbon dioxide, underlining a fundamental role for paleoclimatology in constraining future climate change. Here, we review the relevancy of paleoclimate information for climate prediction and discuss the prospects for emerging methodologies to further insights gained from past climates. Advances in proxy methods and interpretations pave the way for the use of past climates for model evaluation—a practice that we argue should be widely adopted. 
    more » « less
  2. Abstract

    The mechanisms which amplify orbitally driven changes in insolation and drive the glacial cycles of the past 2.6 million years, the Pleistocene, are poorly understood. Previous studies indicate that cloud phase feedbacks oppose ice sheet initiation when orbital configuration supports ice sheet growth. Cloud phase was observationally constrained in a recent study and provides evidence for a weaker negative cloud feedback in response to carbon dioxide doubling. We observationally constrain cloud phase in the Community Earth System Model and explore how changes in orbital configuration impact the climate response. Constraining cloud phase weakens the negative high latitude cloud phase feedback and unmasks positive water vapor and cloud feedbacks (amount and optical depth) that extend cooling to lower latitudes. Snowfall accumulation and ablation metrics also support ice sheet expansion as seen in proxy records. This indicates that well‐known cloud and water vapor feedbacks are the mechanisms amplifying orbital climate forcing.

     
    more » « less